
Week 9 - Wednesday



 What did we talk about last time?
 Dynamic programming
 Segmented least squares







 A deck of cards has positive integers on one side and either red or 
blue on the other side.

 Consider the following hypothesis:
If a card shows an even number on one side, it's red on the other side.

 Which cards must you turn over to test this hypothesis?







 Let's say that we have a series of n jobs that we can run on a 
single machine

 Each job i takes time wi
 We must finish all jobs before time W
 We want to keep the machine as busy as possible, working on 

jobs until as close to W as we can



 This fundamental problem can be looked at in many ways:
 Try to fill up a knapsack with objects where each has weight wi and 

the knapsack can only hold W
 Take a set of numbers and find a subset whose sum is as close as 

possible to a target value



 No one knows a natural greedy solution for this problem
 Always take the biggest that fits doesn't work:
 Consider set {W/2 + 1, W/2, W/2}

 Always take the smallest that still fits doesn't work:
 Consider set {1, W/2, W/2}



 Like before, we could consider the optimal value OPT(n) of all 
jobs up to n

 If n is not in the solution, OPT(n) = OPT(n – 1)
 So far, so good

 If n is in the solution …
 Crap.
 We don't get very much information about what other jobs can't be 

in the solution
 We need to add more information



 We want to think about weights
 If we have job n in the solution, then there will only be W – wn

capacity left
 Let's assume that all the weights are integers
 Then, we could define a class of optimal values:

OPT 𝑖𝑖, 𝑤𝑤 = max
𝑆𝑆

�
𝑗𝑗∈𝑆𝑆

𝑤𝑤𝑗𝑗 , such that�
𝑗𝑗∈𝑆𝑆

𝑤𝑤𝑗𝑗 ≤ 𝑤𝑤

 We're going to store optimal values for sets of jobs {1, 2,…, i} that 
do not exceed weight w, for all possible jobs i and weights w



 If job n is not in the optimal set, OPT(n, W) = OPT(n – 1, W)
 If job n is in the optimal set, OPT(n, W) = wn + OPT(n – 1, W –

wn)
 We can make the full recurrence for all possible weight values:
 If w < wi, then OPT(i, w) = OPT(i – 1, w)
 Otherwise, OPT(i, w) = max(OPT(i – 1, w), wi + OPT(i – 1, w – wi))



 Create 2D array M[0…n][0…W]
 For w from 1 to W
 Initialize M[0][w] = 0

 For i from 1 to n
 For w from 0 to W
▪ If w < wi, then 
▪ OPT(i, w) = OPT(i – 1, w)

▪ Else
▪ OPT(i, w) = max(OPT(i – 1, w), wi + OPT(i – 1, w – wi))

 Return M[n][W]



 We're building a big 2D array
 Its  size is nW
 n is the number of items
 W is the maximum weight
 Actually, it's got one more row and one more column, just to make 

things easier
 The book makes this array with row 0 at the  bottom
 I've never seen anyone else do that
 I'm going to put row 0 at the  top



0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

0

0

0

i – 1 0

i 0

0

0

0

n 0

0 1 2 w- wi w W



 The algorithm has a simple nested loop
 The outer loop runs n + 1 times
 The inner loop runs W + 1 times

 The total running time is O(nW)
 The space needed is also O(nW)
 Note that this time is not polynomial in terms of n
 It's polynomial in n and W, but W is the maximum weight
 Which could be huge!

 We call running times like this pseudo-polynomial
 Things are fine if W is similar to n, but it could be huge!



 Like the other dynamic programming problems, the hard part 
is finding the actual value of the optimal solution

 We can trace back from M[n][W], depending on whether the 
value was included or not

 Given a filled in table M, we can find an optimal set of jobs in 
O(n) time



 Weights: 2, 7, 1, 3, 8, 4
 Maximum: 19
 Create the table to find all of the optimal values that include 

items 1, 2,…, i for every possible weight w up to 19



i wi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 0

2 7 0

3 1 0

4 3 0

5 8 0

6 4 0





 The knapsack problem is a classic problem that extends 
subset sum a little

 As before, there is a maximum capacity W and each item has 
a weight wi

 Each item also has a value vi
 The goal is to maximize the value of objects collected without 

exceeding the capacity
 … like Indiana Jones trying to put the most valuable objects 

from a tomb into his limited-capacity knapsack



 The knapsack problem is really the same as subset sum, 
except that we are concerned with maximum value instead of 
maximum weight

 We need only to update the recurrence to keep the maximum 
value:
 If w < wi, then OPT(i, w) = OPT(i – 1, w)
 Otherwise, OPT(i, w) = max(OPT(i – 1, w), vi + OPT(i – 1, w – wi))



 Items (wi, vi):
 (7, 9)
 (3, 4)
 (2, 3)
 (6, 2)
 (4, 5)
 (5, 7)

 Maximum weight: 10
 Create the table to find all of the optimal values that include items 

1, 2,…, i for every possible weight w up to 10



i wi vi 0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 7 9 0

2 3 4 0

3 2 3 0

4 6 2 0

5 4 5 0

6 5 7 0





 Sequence alignment



 Work on Homework 5
 Read section 6.6


	COMP 4500
	Last time
	Questions?
	Assignment 5
	Logical warmup
	Three-Sentence Summary of Subset Sum and Knapsack
	Subset Sum
	Subset sum
	Other ways of looking at it
	Greedy doesn't work
	Another algorithm that doesn't work
	Adding another variable
	A new recurrence
	Subset-Sum(n,W)
	What does that look like?
	Table M of OPT values
	Running time
	Reconstructing the answer
	Subset sum example
	Table to fill in
	Knapsack
	Knapsack
	An easy extension
	Knapsack example
	Fill in the table
	Upcoming
	Next time…
	Reminders

