
Week 9 - Wednesday

 What did we talk about last time?
 Dynamic programming
 Segmented least squares

 A deck of cards has positive integers on one side and either red or
blue on the other side.

 Consider the following hypothesis:
If a card shows an even number on one side, it's red on the other side.

 Which cards must you turn over to test this hypothesis?

 Let's say that we have a series of n jobs that we can run on a
single machine

 Each job i takes time wi
 We must finish all jobs before time W
 We want to keep the machine as busy as possible, working on

jobs until as close to W as we can

 This fundamental problem can be looked at in many ways:
 Try to fill up a knapsack with objects where each has weight wi and

the knapsack can only hold W
 Take a set of numbers and find a subset whose sum is as close as

possible to a target value

 No one knows a natural greedy solution for this problem
 Always take the biggest that fits doesn't work:
 Consider set {W/2 + 1, W/2, W/2}

 Always take the smallest that still fits doesn't work:
 Consider set {1, W/2, W/2}

 Like before, we could consider the optimal value OPT(n) of all
jobs up to n

 If n is not in the solution, OPT(n) = OPT(n – 1)
 So far, so good

 If n is in the solution …
 Crap.
 We don't get very much information about what other jobs can't be

in the solution
 We need to add more information

 We want to think about weights
 If we have job n in the solution, then there will only be W – wn

capacity left
 Let's assume that all the weights are integers
 Then, we could define a class of optimal values:

OPT 𝑖𝑖,𝑤𝑤 = max
𝑆𝑆

�
𝑗𝑗∈𝑆𝑆

𝑤𝑤𝑗𝑗 , such that�
𝑗𝑗∈𝑆𝑆

𝑤𝑤𝑗𝑗 ≤ 𝑤𝑤

 We're going to store optimal values for sets of jobs {1, 2,…, i} that
do not exceed weight w, for all possible jobs i and weights w

 If job n is not in the optimal set, OPT(n, W) = OPT(n – 1, W)
 If job n is in the optimal set, OPT(n, W) = wn + OPT(n – 1, W –

wn)
 We can make the full recurrence for all possible weight values:
 If w < wi, then OPT(i, w) = OPT(i – 1, w)
 Otherwise, OPT(i, w) = max(OPT(i – 1, w), wi + OPT(i – 1, w – wi))

 Create 2D array M[0…n][0…W]
 For w from 1 to W
 Initialize M[0][w] = 0

 For i from 1 to n
 For w from 0 to W
▪ If w < wi, then
▪ OPT(i, w) = OPT(i – 1, w)

▪ Else
▪ OPT(i, w) = max(OPT(i – 1, w), wi + OPT(i – 1, w – wi))

 Return M[n][W]

 We're building a big 2D array
 Its size is nW
 n is the number of items
 W is the maximum weight
 Actually, it's got one more row and one more column, just to make

things easier
 The book makes this array with row 0 at the bottom
 I've never seen anyone else do that
 I'm going to put row 0 at the top

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

0

0

0

i – 1 0

i 0

0

0

0

n 0

0 1 2 w- wi w W

 The algorithm has a simple nested loop
 The outer loop runs n + 1 times
 The inner loop runs W + 1 times

 The total running time is O(nW)
 The space needed is also O(nW)
 Note that this time is not polynomial in terms of n
 It's polynomial in n and W, but W is the maximum weight
 Which could be huge!

 We call running times like this pseudo-polynomial
 Things are fine if W is similar to n, but it could be huge!

 Like the other dynamic programming problems, the hard part
is finding the actual value of the optimal solution

 We can trace back from M[n][W], depending on whether the
value was included or not

 Given a filled in table M, we can find an optimal set of jobs in
O(n) time

 Weights: 2, 7, 1, 3, 8, 4
 Maximum: 19
 Create the table to find all of the optimal values that include

items 1, 2,…, i for every possible weight w up to 19

i wi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0

1 2 0

2 7 0

3 1 0

4 3 0

5 8 0

6 4 0

 The knapsack problem is a classic problem that extends
subset sum a little

 As before, there is a maximum capacity W and each item has
a weight wi

 Each item also has a value vi
 The goal is to maximize the value of objects collected without

exceeding the capacity
 … like Indiana Jones trying to put the most valuable objects

from a tomb into his limited-capacity knapsack

 The knapsack problem is really the same as subset sum,
except that we are concerned with maximum value instead of
maximum weight

 We need only to update the recurrence to keep the maximum
value:
 If w < wi, then OPT(i, w) = OPT(i – 1, w)
 Otherwise, OPT(i, w) = max(OPT(i – 1, w), vi + OPT(i – 1, w – wi))

 Items (wi, vi):
 (7, 9)
 (3, 4)
 (2, 3)
 (6, 2)
 (4, 5)
 (5, 7)

 Maximum weight: 10
 Create the table to find all of the optimal values that include items

1, 2,…, i for every possible weight w up to 10

i wi vi 0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 7 9 0

2 3 4 0

3 2 3 0

4 6 2 0

5 4 5 0

6 5 7 0

 Sequence alignment

 Work on Homework 5
 Read section 6.6

	COMP 4500
	Last time
	Questions?
	Assignment 5
	Logical warmup
	Three-Sentence Summary of Subset Sum and Knapsack
	Subset Sum
	Subset sum
	Other ways of looking at it
	Greedy doesn't work
	Another algorithm that doesn't work
	Adding another variable
	A new recurrence
	Subset-Sum(n,W)
	What does that look like?
	Table M of OPT values
	Running time
	Reconstructing the answer
	Subset sum example
	Table to fill in
	Knapsack
	Knapsack
	An easy extension
	Knapsack example
	Fill in the table
	Upcoming
	Next time…
	Reminders

