Week 9 - Wednesday

COMP 4500

Last time

- What did we talk about last time?
- Dynamic programming
- Segmented least squares

Questions?

Assignment 5

Logical warmup

- A deck of cards has positive integers on one side and either red or blue on the other side.
- Consider the following hypothesis:
 - If a card shows an even number on one side, it's red on the other side.
- Which cards must you turn over to test this hypothesis?

Three-Sentence Summary of Subset Sum and Knapsack

Subset Sum

Subset sum

- Let's say that we have a series of *n* jobs that we can run on a single machine
- Each job *i* takes time *w_i*
- We must finish all jobs before time W
- We want to keep the machine as busy as possible, working on jobs until as close to W as we can

Other ways of looking at it

- This fundamental problem can be looked at in many ways:
 - Try to fill up a knapsack with objects where each has weight w_i and the knapsack can only hold W
 - Take a set of numbers and find a subset whose sum is as close as possible to a target value

Greedy doesn't work

- No one knows a natural greedy solution for this problem
- Always take the biggest that fits doesn't work:
 - Consider set {W/2 + 1, W/2, W/2}
- Always take the smallest that still fits doesn't work:
 - Consider set {1, W/2, W/2}

Another algorithm that doesn't work

- Like before, we could consider the optimal value OPT(*n*) of all jobs up to *n*
- If *n* is not in the solution, OPT(*n*) = OPT(*n*−1)
 - So far, so good
- If *n* is in the solution ...
 - Crap.
 - We don't get very much information about what other jobs can't be in the solution
- We need to add more information

Adding another variable

- We want to think about weights
- If we have job *n* in the solution, then there will only be *W w_n* capacity left
- Let's assume that all the weights are integers
- Then, we could define a class of optimal values:

$$OPT(i, w) = \max_{S} \sum_{j \in S} w_j$$
, such that $\sum_{j \in S} w_j \le w$

We're going to store optimal values for sets of jobs {1, 2,..., i} that do not exceed weight w, for all possible jobs i and weights w

A new recurrence

- If job n is not in the optimal set, OPT(n, W) = OPT(n 1, W)
- If job **n** is in the optimal set, $OPT(n, W) = w_n + OPT(n 1, W w_n)$
- We can make the full recurrence for all possible weight values:
 - If $w < w_i$, then OPT(i, w) = OPT(i 1, w)
 - Otherwise, OPT(*i*, *w*) = max(OPT(*i*-1, *w*), *w_i* + OPT(*i*-1, *w*-*w_i*))

Subset-Sum(n,W)

- Create 2D array *M*[0...*n*][0...*W*]
- For w from 1 to W
 - Initialize *M*[o][*w*] = o
- For *i* from 1 to *n*
 - For w from o to W
 - If w < w_i, then
 - OPT(i, w) = OPT(i 1, w)
 - Else

• OPT(i, w) = max(OPT(i - 1, w), w_i + OPT($i - 1, w - w_i$))

Return *M*[*n*][*W*]

What does that look like?

- We're building a big 2D array
- Its size is nW
 - *n* is the number of items
 - W is the maximum weight
 - Actually, it's got one more row and one more column, just to make things easier
- The book makes this array with row o at the bottom
- I've never seen anyone else do that
- I'm going to put row o at the top

Table *M* of OPT values

Running time

- The algorithm has a simple nested loop
 - The outer loop runs n + 1 times
 - The inner loop runs W + 1 times
- The total running time is O(nW)
- The space needed is also O(nW)
- Note that this time is **not** polynomial in terms of **n**
- It's polynomial in n and W, but W is the maximum weight
 - Which could be huge!
- We call running times like this pseudo-polynomial
- Things are fine if W is similar to n, but it could be huge!

Reconstructing the answer

- Like the other dynamic programming problems, the hard part is finding the actual value of the optimal solution
- We can trace back from *M*[*n*][*W*], depending on whether the value was included or not
- Given a filled in table *M*, we can find an optimal set of jobs in O(*n*) time

Subset sum example

- Weights: 2, 7, 1, 3, 8, 4
- Maximum: 19
- Create the table to find all of the optimal values that include items 1, 2,..., *i* for every possible weight *w* up to 19

Table to fill in

i	w _i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	2	0																			
2	7	0																			
3	1	0																			
4	3	0																			
5	8	0																			
6	4	0																			

Knapsack

- The knapsack problem is a classic problem that extends subset sum a little
- As before, there is a maximum capacity W and each item has a weight w_i
- Each item also has a value v_i
- The goal is to maximize the value of objects collected without exceeding the capacity
- Ilke Indiana Jones trying to put the most valuable objects from a tomb into his limited-capacity knapsack

An easy extension

- The knapsack problem is really the same as subset sum, except that we are concerned with maximum value instead of maximum weight
- We need only to update the recurrence to keep the maximum value:
 - If $w < w_{ii}$ then OPT(i, w) = OPT(i 1, w)
 - Otherwise, OPT(*i*, *w*) = max(OPT(*i*-1, *w*), *v_i* + OPT(*i*-1, *w*-*w_i*))

Knapsack example

- Items (*w_i*, *v_i*):
 - (7, 9)
 - **(**3, 4)
 - (2,3)
 - **(6, 2)**
 - (4, 5)
 - (5,7)
- Maximum weight: 10
- Create the table to find all of the optimal values that include items
 1, 2,..., *i* for every possible weight *w* up to 10

Fill in the table

i	w _i	Vi	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	7	9	0										
2	3	4	0										
3	2	3	0										
4	6	2	0										
5	4	5	0										
6	5	7	0										

Upcoming

Sequence alignment

- Work on Homework 5
- Read section 6.6