
Week 9 - Wednesday



 What did we talk about last time?
 Dynamic programming
 Segmented least squares







 A deck of cards has positive integers on one side and either red or 
blue on the other side.

 Consider the following hypothesis:
If a card shows an even number on one side, it's red on the other side.

 Which cards must you turn over to test this hypothesis?







 Let's say that we have a series of n jobs that we can run on a 
single machine

 Each job i takes time wi
 We must finish all jobs before time W
 We want to keep the machine as busy as possible, working on 

jobs until as close to W as we can



 This fundamental problem can be looked at in many ways:
 Try to fill up a knapsack with objects where each has weight wi and 

the knapsack can only hold W
 Take a set of numbers and find a subset whose sum is as close as 

possible to a target value



 No one knows a natural greedy solution for this problem
 Always take the biggest that fits doesn't work:
 Consider set {W/2 + 1, W/2, W/2}

 Always take the smallest that still fits doesn't work:
 Consider set {1, W/2, W/2}



 Like before, we could consider the optimal value OPT(n) of all 
jobs up to n

 If n is not in the solution, OPT(n) = OPT(n – 1)
 So far, so good

 If n is in the solution …
 Crap.
 We don't get very much information about what other jobs can't be 

in the solution
 We need to add more information



 We want to think about weights
 If we have job n in the solution, then there will only be W – wn

capacity left
 Let's assume that all the weights are integers
 Then, we could define a class of optimal values:

OPT 𝑖𝑖,𝑤𝑤 = max
𝑆𝑆

�
𝑗𝑗∈𝑆𝑆

𝑤𝑤𝑗𝑗 , such that�
𝑗𝑗∈𝑆𝑆

𝑤𝑤𝑗𝑗 ≤ 𝑤𝑤

 We're going to store optimal values for sets of jobs {1, 2,…, i} that 
do not exceed weight w, for all possible jobs i and weights w



 If job n is not in the optimal set, OPT(n, W) = OPT(n – 1, W)
 If job n is in the optimal set, OPT(n, W) = wn + OPT(n – 1, W –

wn)
 We can make the full recurrence for all possible weight values:
 If w < wi, then OPT(i, w) = OPT(i – 1, w)
 Otherwise, OPT(i, w) = max(OPT(i – 1, w), wi + OPT(i – 1, w – wi))



 Create 2D array M[0…n][0…W]
 For w from 1 to W
 Initialize M[0][w] = 0

 For i from 1 to n
 For w from 0 to W
▪ If w < wi, then 
▪ OPT(i, w) = OPT(i – 1, w)

▪ Else
▪ OPT(i, w) = max(OPT(i – 1, w), wi + OPT(i – 1, w – wi))

 Return M[n][W]



 We're building a big 2D array
 Its  size is nW
 n is the number of items
 W is the maximum weight
 Actually, it's got one more row and one more column, just to make 

things easier
 The book makes this array with row 0 at the  bottom
 I've never seen anyone else do that
 I'm going to put row 0 at the  top



0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

0

0

0

i – 1 0

i 0

0

0

0

n 0

0 1 2 w- wi w W



 The algorithm has a simple nested loop
 The outer loop runs n + 1 times
 The inner loop runs W + 1 times

 The total running time is O(nW)
 The space needed is also O(nW)
 Note that this time is not polynomial in terms of n
 It's polynomial in n and W, but W is the maximum weight
 Which could be huge!

 We call running times like this pseudo-polynomial
 Things are fine if W is similar to n, but it could be huge!



 Like the other dynamic programming problems, the hard part 
is finding the actual value of the optimal solution

 We can trace back from M[n][W], depending on whether the 
value was included or not

 Given a filled in table M, we can find an optimal set of jobs in 
O(n) time



 Weights: 2, 7, 1, 3, 8, 4
 Maximum: 19
 Create the table to find all of the optimal values that include 

items 1, 2,…, i for every possible weight w up to 19



i wi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 0

2 7 0

3 1 0

4 3 0

5 8 0

6 4 0





 The knapsack problem is a classic problem that extends 
subset sum a little

 As before, there is a maximum capacity W and each item has 
a weight wi

 Each item also has a value vi
 The goal is to maximize the value of objects collected without 

exceeding the capacity
 … like Indiana Jones trying to put the most valuable objects 

from a tomb into his limited-capacity knapsack



 The knapsack problem is really the same as subset sum, 
except that we are concerned with maximum value instead of 
maximum weight

 We need only to update the recurrence to keep the maximum 
value:
 If w < wi, then OPT(i, w) = OPT(i – 1, w)
 Otherwise, OPT(i, w) = max(OPT(i – 1, w), vi + OPT(i – 1, w – wi))



 Items (wi, vi):
 (7, 9)
 (3, 4)
 (2, 3)
 (6, 2)
 (4, 5)
 (5, 7)

 Maximum weight: 10
 Create the table to find all of the optimal values that include items 

1, 2,…, i for every possible weight w up to 10



i wi vi 0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 7 9 0

2 3 4 0

3 2 3 0

4 6 2 0

5 4 5 0

6 5 7 0





 Sequence alignment



 Work on Homework 5
 Read section 6.6
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